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Background

* InICU settings, data come from
multiple sources and are
inherently related

®* Measurements collected at
irregular intervals (informative
sampling)—aligning them will
result in missing values

®* Cannot always get more samples!
Some measurements are invasive
(Siegal et al., 2023)
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Challenges

* We want to impute missing
values...

* but traditional imputation often e PR s
ignores temporal structure (e.g. T e T el U
MICE) & uncertainty (e.g. deep N '
learning) I AL R T

®* Need for robust, uncertainty- i e sarral a}: sam s ST ;;° I’:;: .
aware imputation in critical care il
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On uncertainty quantification

®* Medical observations are inherently uncertain, coming from measurement
errors or the use of surrogate markers — leading to unreliable model
predictions (Cabitza et al., 2017)

* Alerts triggered by prediction tools are often not accompanied by a

clinically actionable change — alarm fatigue (Embi & Leonard, 2012;
Umscheid et al., 2015)
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Physicochemical model

* |n critical care medicine, clinicians monitor pH levels to inform them about
the conditions of a patient

* While pH is the primary variable to monitor, other covariates provide
information on metabolic status (Gattioni et al., 2017)

®* pH can be modelled from strong ion difference (SID), total weak acid, and
pCO2 by the Stewart-Fencl approach
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where SID, A;or, and pCO, are independent variables and Ky are
constants.
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Proposed solution

®* GPs and Deep GPs are typically
used for emulating
computationally expensive
numerical models

* Integrates longitudinal & cross-
sectional information

* Joint modelling for all data
streams

* Provides uncertainty quantification
for imputed values

gP®

Deep Gaussian Process with Stochastic Imputation
(Ming et al., 2023)
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Gaussian processes

Y ~ N (u,0*R(X))

where u € RY is the mean vector, o2 is the scale parameter, and R(X) € RV*N
is the correlation matrix

Cell ij in the matrix R(X) is specified by k(Xi*,Xj*) +01x,,=x,.} where k(-,-) is
a given kernel function with n being the nugget term and 1, being the indicator
function
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Gaussian processes

Given a new input position x, € R*?, then

to = r(xg)"R(X)"1y
o = 0?(1+n —r(xe)"R(x)"r(xy))

where r(xg) = [k(xg, X1.), ..., k(xg, xn)]T
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Deep GPs

* Consider a GP model with N sets of D-dimensional input (X € RV*P) and
produces N sets of P-dimensional output (W € RV*P)

* In the Stewart—Fencl approach, this multi-output GP model can be
interpreted as using time as a shared input variable and predicting
covariates as outputs

®* We can assume that the output W of this model, i.e. the column vectors
W.,, is conditionally independent with respect to X

* We then link the output W to a second GP model that produces N one-
dimensional outputs (¥ € RV), e.g. to predict pH



CHIMERA

Deep GPs

We can see it as a linked GP where,
for a new input position x,, the
posterior predictive distribution of the <
output can be written as

X —— gp{Y

X ——> gp®

GP2 ——> Y

PO | Xp3 ¥, W, X) = lp(y{] | Wy, ¥, W, X)p(Wg | X0 ¥, W, X)dw,

P
= IP (Vo | Woi ¥, W) HF{WGp | Xgs W, X)dw

p=1 X —— g—p(lP)
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Deep GPs

Then the mean and variance become

fip = I(xg)"RW) "1y

G5 = y"RW) ™ J(xo))RW)™'y — [I(xg)" RW) "'y I* + a%(1 +n — tr[R(W) ] (x0)])
where I(x,) € RV*! with its i-th element I; = 1,1 E[k, (Wo,(x0), wip)]

and J(x,) € RNV with its ij-th element J;; = [1,-1 E[k, (Wop(x0), Wip)kp (Wop(x0), wip)]
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Deep GP algorithm

)
x —> gp{!

X — gP{® gP; ——— Y

X ——> gp(P

Algorithm 1 Construction of a DGP emulator with the
hierarchy in Figure 2

Input: i) Realisations x and y; ii) A new input position xq;
iii) The number of imputations N.

Output: Mean and variance of yo(xg).

l: fori=1,...,N do

2: Given x and y, draw an imputation {W.p i}p=1,.. . P
of the latent output {W.,}p=1,....p via an Elliptical Slice
Sampling [40] update.

3: Construct the LGP emulator £LGP; with the mean
[to,i(x0) and variance &g_i(x”), given x, y, and {w,p i}.

4: end for

5: Compute the mean ji1(xg) and variance e?(xq) of yo(xo) by

]\I‘
1 -
i(xo) = I ;un.i(xn)-
N

2 l 2 2
0" (x0) = N Z (Iﬁu.é(xu)]z + 5’6,.-()(0)) — p(xo0)".
=1




CHIMERA

Numerical experiment

* Data used: Paediatric ICU admissions (n=14)
* Variables: pCO2, SID (Na*, CI), lactate (weak acid), pH

®* Preprocessing: Hourly discretisation, z-score normalisation, masking to
simulate missingness
* Benchmarks:

® Last observation carried forward (LOCF)
®  MICE
®  GP interpolation
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Model evaluation

®* Four levels of missingness: 10%, 20%, 30%, 40%

®* Two evaluation metrics
® Mean absolute error — imputation accuracy

N
1 "
MAE == > Yia = Yial

i=1 deD
® Negative log likelihood — uncertainty quantification

N
NLL = = > log p(¥i|X;; 0)
i=1



CHIMERA

Imputing missing values

® DGP achieved the lowest error

rates at 10% to 30% missing 0.85
values—covering the typical 15— 0.80 - D
30% missingness in critical care — | MICE
data (Luo et al., 2017) 0701 —— LOCF
. [ [ q —
* As missingness rate increases, = 0.65 /Jl
longitudinal information is more 00071 I/Ilr
valuable than cross-sectional 0-557 \”ﬁ
information e | | |
) ) 0.10 0.20 0.30 0.40
* DGP combines both — optimal P(missing)

results in lower missingness
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Uncertainty quantification

* DGP performs best when taking o
into account the uncertainty | ap
quantification a2 /

* As missingness rate increases, = 07

DGP maintains tighter uncertainty 40 |

bounds than GP . /T

® LOCF was excluded as it does not T T T T

provide uncertainty quantification P(missing)

—— DGP

LL
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Uncertainty quantification

As the covariates were connected through pH in the output layer using DGP-
Sl, an observation from one covariate could affect the uncertainty of another
covariate where an observation was unavailable.

2.5 2.59
o o
S 0.0 S 0.01
Q Q.
—-2.54 —=2.54
1 1 I 1 1 I I 1 1 1 1 I
2.5+ 2.5
() %00 ()
—-2.5 —-2.5
T T = = T T T T T L— T T T
. . 5
|
gy 257 W g 25 W|
o L ©
“g 0.0 il e TSR o RN g 0.0+ IR e i T WD N
— _2.5 — _2.5
I 1 b 1 | I 1 I I 1 1 | I T 1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0




CHIMERA

Implications

* DGP-SI provides reliable, uncertainty-aware imputations to aid clinical
decision-making

* Insight into patient status between lab measurements

* Similar problems can be found in human activity recognition from multiple
sensors, sleep disorder diagnosis using EEG, and hepatocellular
carcinoma (Han et al., 2021)
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Limitations & future work

®* Computational expense with large datasets — sparse GP (Snelson &
Ghahramani, 2007) or GPU parallelisation (Wang et al., 2019)

* Propagated uncertainty which may result in worse performance for
predicting pH

®* Comparison to deep learning models

®* Analysis in higher missingness
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Thank you

aliakbars.id/dgpsi
ali.septiandri.21@ucl.ac.uk
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