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Background

• In ICU settings, data come from 

multiple sources and are 

inherently related

• Measurements collected at 

irregular intervals (informative 
sampling)—aligning them will 

result in missing values

• Cannot always get more samples! 

Some measurements are invasive 

(Siegal et al., 2023)
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Challenges

• We want to impute missing 

values…

• but traditional imputation often 

ignores temporal structure (e.g. 

MICE) & uncertainty (e.g. deep 
learning)

• Need for robust, uncertainty-

aware imputation in critical care 

datasets
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On uncertainty quantification

• Medical observations are inherently uncertain, coming from measurement 

errors or the use of surrogate markers → leading to unreliable model 

predictions (Cabitza et al., 2017)

• Alerts triggered by prediction tools are often not accompanied by a 

clinically actionable change → alarm fatigue (Embi & Leonard, 2012; 
Umscheid et al., 2015)
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Physicochemical model

• In critical care medicine, clinicians monitor pH levels to inform them about 

the conditions of a patient

• While pH is the primary variable to monitor, other covariates provide 

information on metabolic status (Gattioni et al., 2017)

• pH can be modelled from strong ion difference (SID), total weak acid, and 
pCO2 by the Stewart-Fencl approach

𝑆𝐼𝐷 + 𝐻+ − 𝐾𝐶
𝑝𝐶𝑂2
𝐻+ −

𝐾𝐴𝐴𝑇𝑂𝑇
𝐾𝐴 + 𝐻+ − 𝐾3

𝐾𝐶𝑝𝐶𝑂2
𝐻+ 2 −

𝐾𝑊
𝐻+ = 0

where 𝑆𝐼𝐷, 𝐴𝑇𝑂𝑇, and 𝑝𝐶𝑂2 are independent variables and 𝐾𝑋 are 
constants.
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Proposed solution

• GPs and Deep GPs are typically 

used for emulating 

computationally expensive 

numerical models

• Integrates longitudinal & cross-
sectional information

• Joint modelling for all data 

streams

• Provides uncertainty quantification 

for imputed values
Deep Gaussian Process with Stochastic Imputation 

(Ming et al., 2023)
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Gaussian processes

𝒀 ∼ 𝒩(𝝁, 𝜎2𝑹 𝑿 )

where 𝝁 ∈ ℝ𝑁 is the mean vector, 𝜎2 is the scale parameter, and 𝑹 𝑿 ∈ ℝ𝑁×𝑁

is the correlation matrix

Cell 𝑖𝑗 in the matrix 𝑹(𝑿) is specified by 𝑘 𝑿𝑖∗, 𝑿𝑗∗ + 𝜂1{𝑿𝑖∗,=𝑿𝑗∗}, where 𝑘(⋅,⋅) is 

a given kernel function with 𝜂 being the nugget term and 1{⋅} being the indicator 

function
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Gaussian processes

Given a new input position 𝒙0 ∈ ℝ1×𝐷, then

𝜇0 = 𝒓 𝒙0
𝑇𝑹 𝑿 −1𝒚

𝜎0
2 = 𝜎2(1 + 𝜂 − 𝒓 𝒙0

𝑇𝑹 𝒙 −1𝒓 𝒙0 )

where 𝒓 𝒙0 = 𝑘 𝒙0, 𝒙1∗ , … , 𝑘(𝒙0, 𝒙𝑁∗)
𝑇
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Deep GPs

• Consider a GP model with 𝑁 sets of 𝐷-dimensional input (𝑿 ∈ ℝ𝑁×𝐷) and 

produces 𝑁 sets of 𝑃-dimensional output (𝑾 ∈ ℝ𝑁×𝐷)

• In the Stewart–Fencl approach, this multi-output GP model can be 

interpreted as using time as a shared input variable and predicting 

covariates as outputs

• We can assume that the output 𝑾 of this model, i.e. the column vectors 

𝑾∗𝑝, is conditionally independent with respect to 𝑿

• We then link the output 𝑾 to a second GP model that produces 𝑵 one-

dimensional outputs (𝒀 ∈ ℝ𝑁), e.g. to predict pH
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Deep GPs

We can see it as a linked GP where, 

for a new input position 𝒙0, the 

posterior predictive distribution of the 

output can be written as
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Deep GPs

Then the mean and variance become

෤𝜇0 = 𝑰 𝒙0
𝑇𝑹 𝒘 −1𝒚

෤𝜎0
2 = 𝒚𝑇𝑹 𝒘 −1𝑱 𝒙0 𝑹 𝒘 −1𝒚 − 𝑰 𝒙0

𝑇𝑹 𝒘 −1𝒚 2 + 𝜎2(1 + 𝜂 − 𝒕𝒓 𝑹 𝒘 −1𝑱 𝒙0 )

where 𝑰 𝒙0 ∈ ℝ𝑁×1 with its 𝑖-th element 𝑰𝑖 = ς𝑝=1
𝑃 𝔼[𝑘𝑝(𝑊0𝑝 𝒙0 , 𝑤𝑖𝑝)]

and 𝐉 𝒙0 ∈ ℝ𝑁×𝑁 with its 𝑖𝑗-th element 𝑱𝑖𝑗 = ς𝑝=1
𝑃 𝔼[𝑘𝑝(𝑊0𝑝 𝒙0 , 𝑤𝑖𝑝)𝑘𝑝(𝑊0𝑝 𝒙0 , 𝑤𝑗𝑝)]
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Deep GP algorithm
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Numerical experiment

• Data used: Paediatric ICU admissions (n=14)

• Variables: pCO2, SID (Na+, Cl-), lactate (weak acid), pH

• Preprocessing: Hourly discretisation, z-score normalisation, masking to 

simulate missingness

• Benchmarks:

▪ Last observation carried forward (LOCF)

▪ MICE

▪ GP interpolation
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Model evaluation

• Four levels of missingness: 10%, 20%, 30%, 40%

• Two evaluation metrics

• Mean absolute error – imputation accuracy

𝑀𝐴𝐸 =
1

𝑁 × 𝐷
෍

𝑖=1

𝑁

෍

𝑑∈𝐷

|𝑌𝑖𝑑 − ෠𝑌𝑖𝑑|

• Negative log likelihood – uncertainty quantification

𝑁𝐿𝐿 = −෍

𝑖=1

𝑁

log 𝑝(𝑌𝑖|𝑋𝑖; 𝜃)
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Imputing missing values

• DGP achieved the lowest error 

rates at 10% to 30% missing 

values—covering the typical 15–

30% missingness in critical care 

data (Luo et al., 2017)

• As missingness rate increases, 

longitudinal information is more 

valuable than cross-sectional 

information

• DGP combines both → optimal 
results in lower missingness
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Uncertainty quantification

• DGP performs best when taking 

into account the uncertainty 

quantification

• As missingness rate increases, 

DGP maintains tighter uncertainty 
bounds than GP

• LOCF was excluded as it does not 

provide uncertainty quantification
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Uncertainty quantification

As the covariates were connected through pH in the output layer using DGP-

SI, an observation from one covariate could affect the uncertainty of another 

covariate where an observation was unavailable.
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Implications

• DGP-SI provides reliable, uncertainty-aware imputations to aid clinical 

decision-making

• Insight into patient status between lab measurements

• Similar problems can be found in human activity recognition from multiple 

sensors, sleep disorder diagnosis using EEG, and hepatocellular 
carcinoma (Han et al., 2021)
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Limitations & future work

• Computational expense with large datasets → sparse GP (Snelson & 

Ghahramani, 2007) or GPU parallelisation (Wang et al., 2019)

• Propagated uncertainty which may result in worse performance for 

predicting pH

• Comparison to deep learning models

• Analysis in higher missingness
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Thank you

aliakbars.id/dgpsi

ali.septiandri.21@ucl.ac.uk
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