Department of Statistical Science, Department of Mathematics UCL Great Ormond Street Institute of Child Health Bloomsbury Institute of Intensive Care Medicine

Something's Missing! Data Imputation in Critical Care Medicine

Ali Septiandri, Takoua Jendoubi, Alejandro Diaz, Samiran Ray, Edward Palmer

Chemistry Refresher

Acid-Base Balance

- Human body is composed principally of water
- Water is highly ionising: H⁺ + OH⁻
- In pure water at 25°C, the [H+] and [OH-] are $1.0 \times 10^{-7} mEq/L$
- Sorenson negative logarithmic pH = 7.0

Water & Alkalinity

- At 0° C: pH = 7.5 (alkaline)
- At 100°C: pH = 6.1 (acidic)
- Arterial pH = 7.4
 - Acidosis pH < 7.3
 - Alkalosis pH > 7.5

CL

What determines pH?

- Water dissociation equilibrium
- Weak acid dissociation equilibrium
- Conservation of mass for weak acids
- Bicarbonate ion formation equilibrium
- Carbonate ion formation equilibrium
- Electrical neutrality

- $[SID] + [H^+] [HCO_3^-] [A^-] [CO_3^2^-] [OH^-] = 0$
- $[H^+] \times [CO_3^{2-}] = K_3 \times [HCO_3^{-}]$
- $[H^+] \times [HCO_3^-] = K_C \times pCO_2$
- $[HA] + [A^-] = A_{TOT}$
- $[H^+] \times [A^-] = K_A \times [HA]$
- $[H^+] \times [OH^-] = K_w$

What determines pH?

What determines pH?

$$[SID] + [H^+] - K_C \frac{pCO_2}{[H^+]} - \frac{K_A A_7}{K_A + [H^+]}$$

where SID, A_{TOT} , and pCO₂ are independent variables and K_X are constants.

$\frac{K_{TOT}}{[H^+]} - K_3 \frac{K_C p C O_2}{[H^+]^2} - \frac{K_W}{[H^+]} = 0$

Notivation

ISSUES

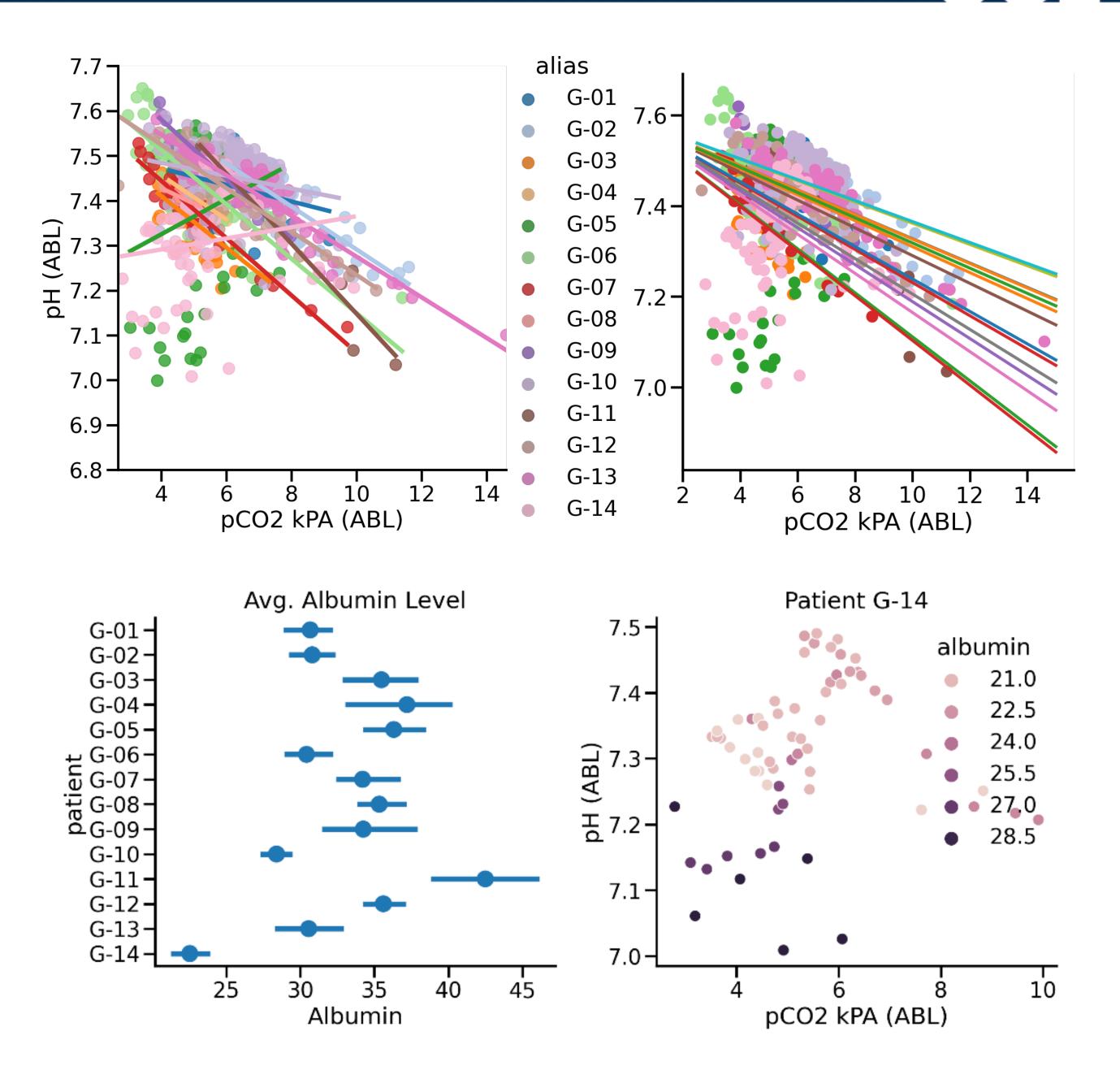
- Concentration of CO₂ can be easily monitored
- It is not enough to tell the whole story
- Other variables are collected in different frequencies

Issue

CO₂ is not enough to tell the whole story

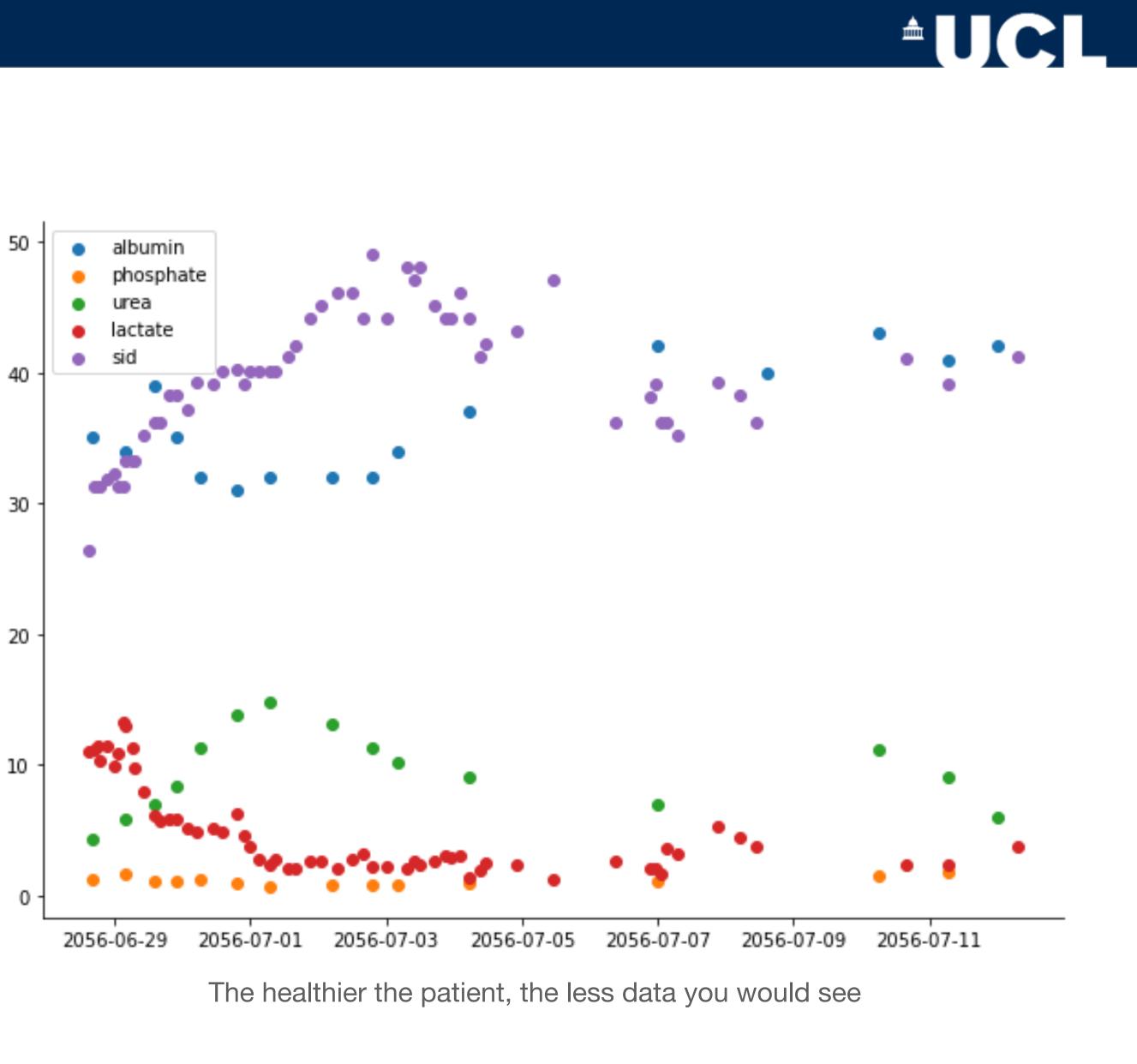
- Model: $pH \sim pCO_2$
 - Left: One OLS model for each
 - Right: Hierarchical with shared intercept
- For patient G-14, albumin level is low most of the time
- It spikes when the anomaly occurs

≜UC



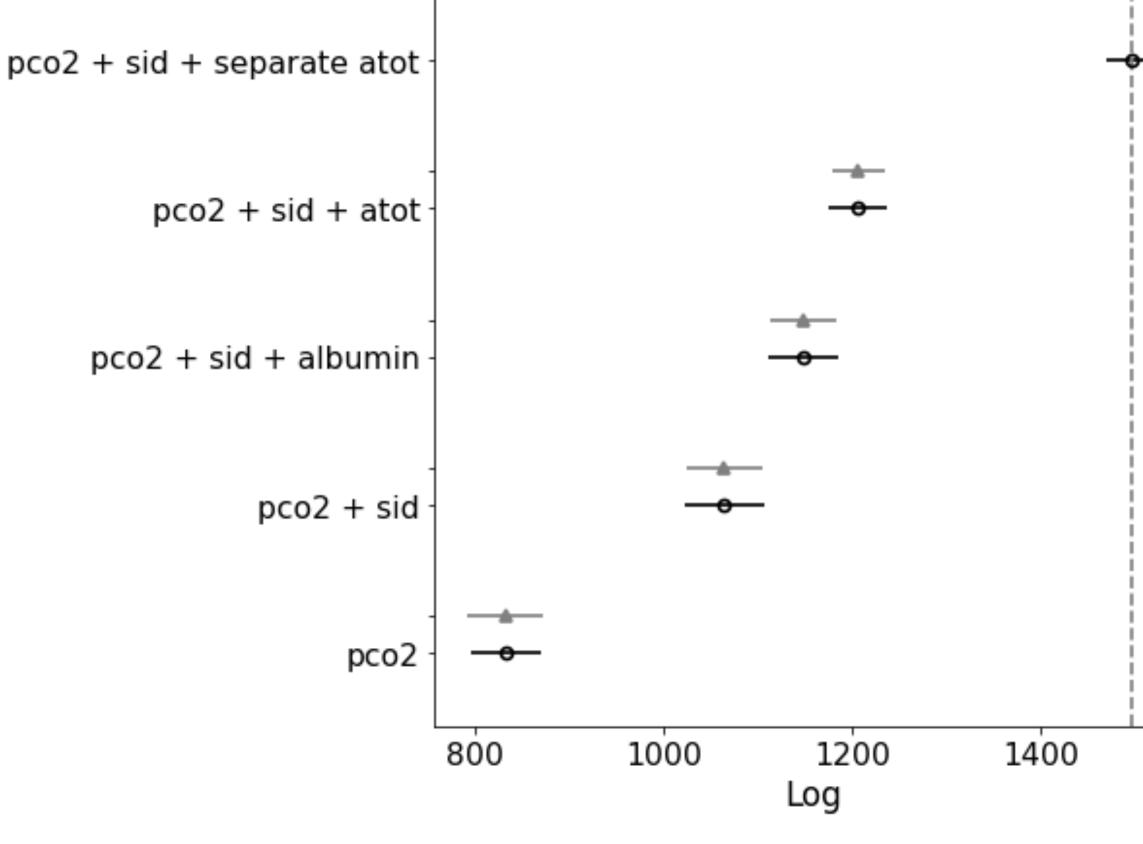
Issue

Data comes in different frequencies



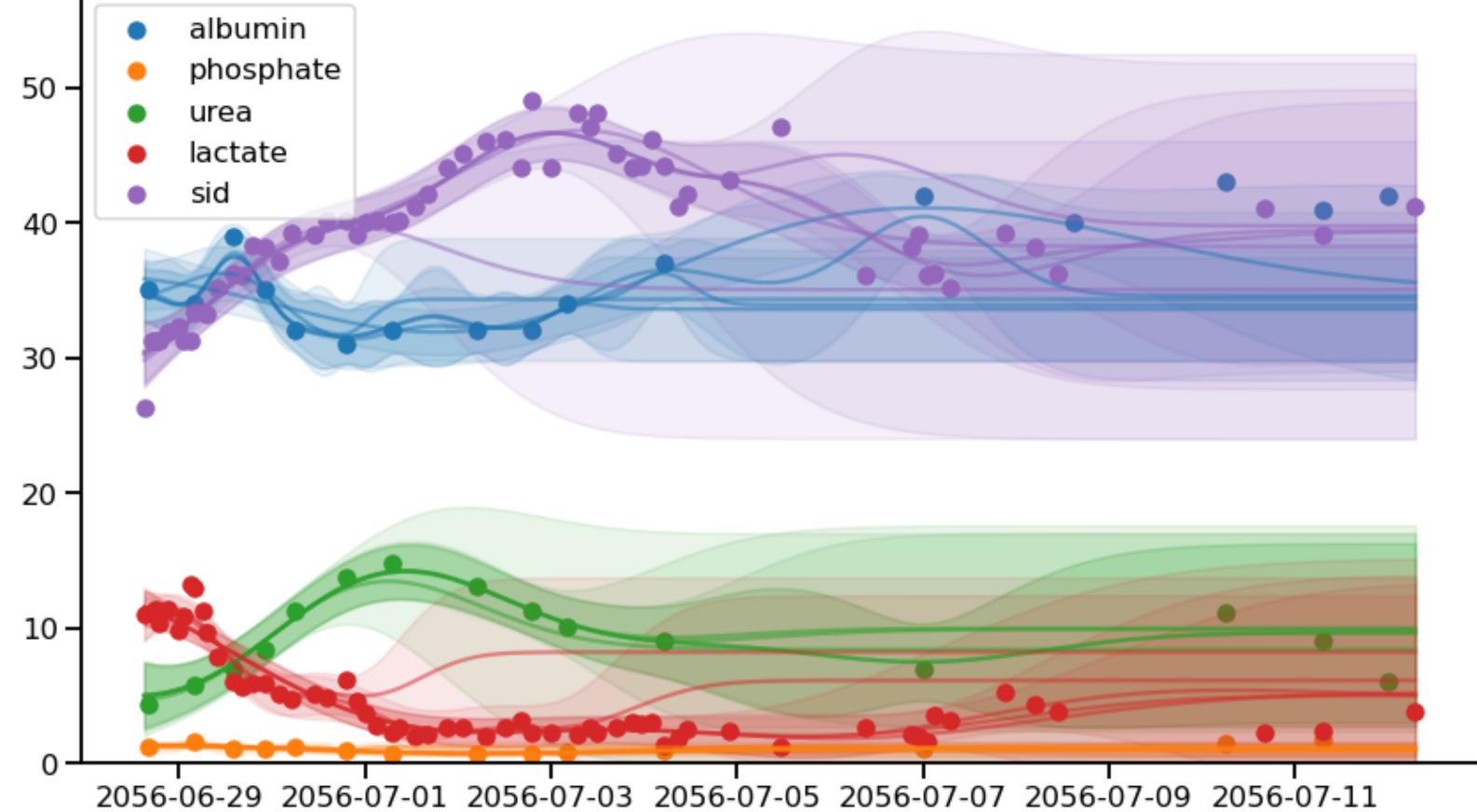
Adding Covariates Last known value imputation

^AUC

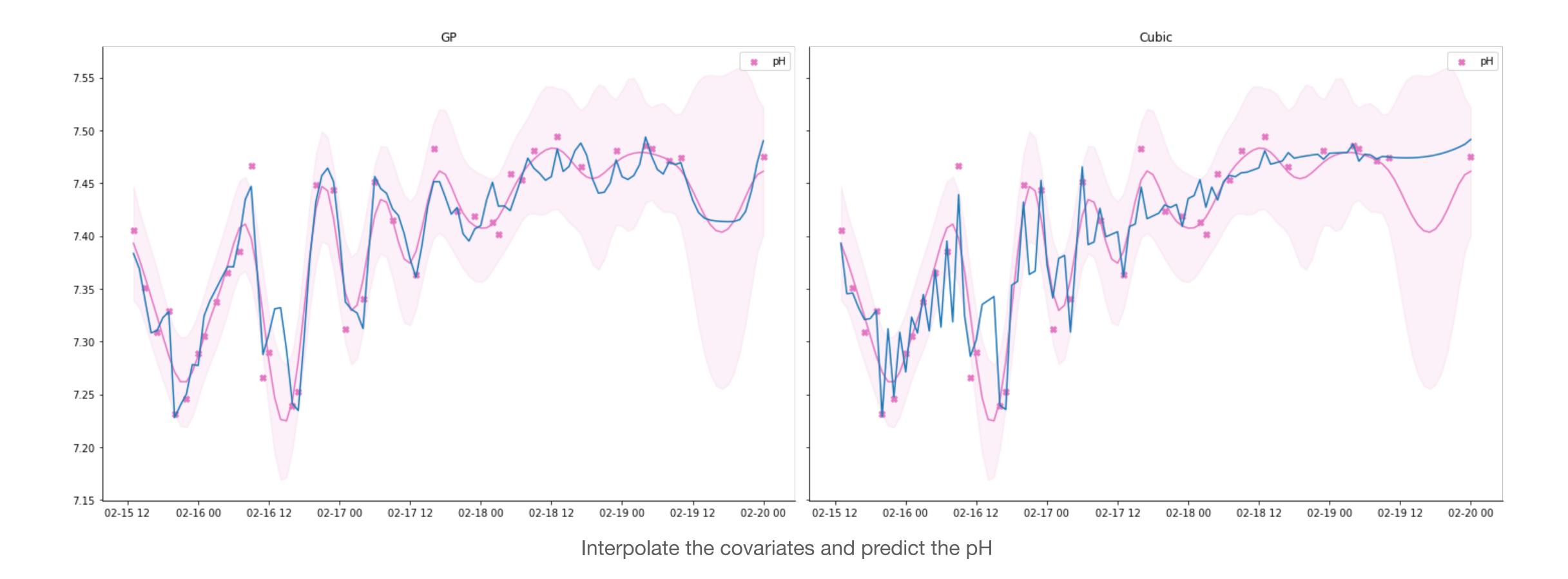


Log pointwise predictive density (Vehtari et al., 2017)

Time Series Cross-Validation with GP



GP vs Cubic Spline Interpolation



Ē

Cross-Validation Leave-One-Patient-Out

- Pink line is GP-interpolated pH
- Blue line is OLS on interpolated covariates
- The difference is not significant

• U

. . . .

*

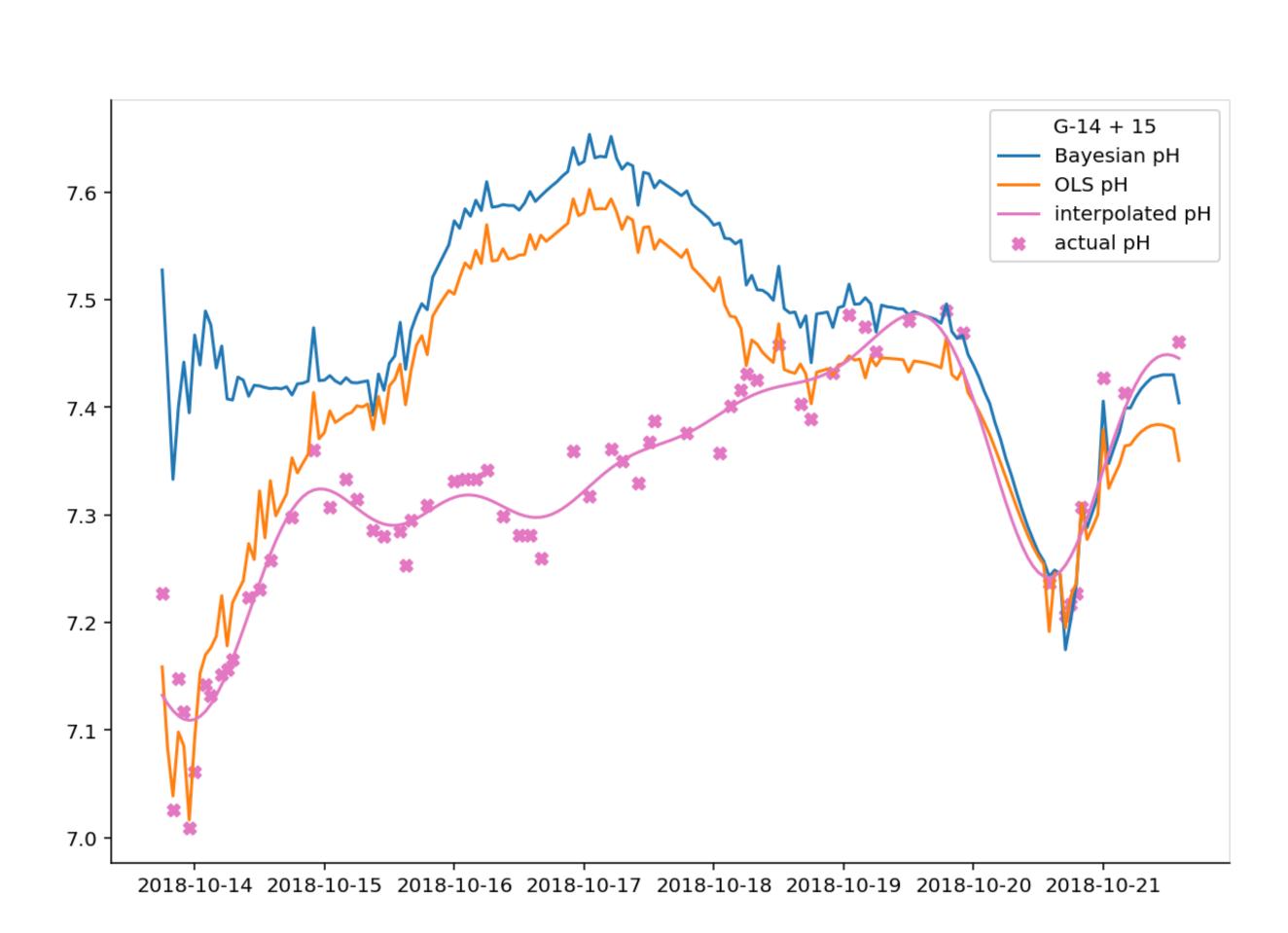
11 12

-

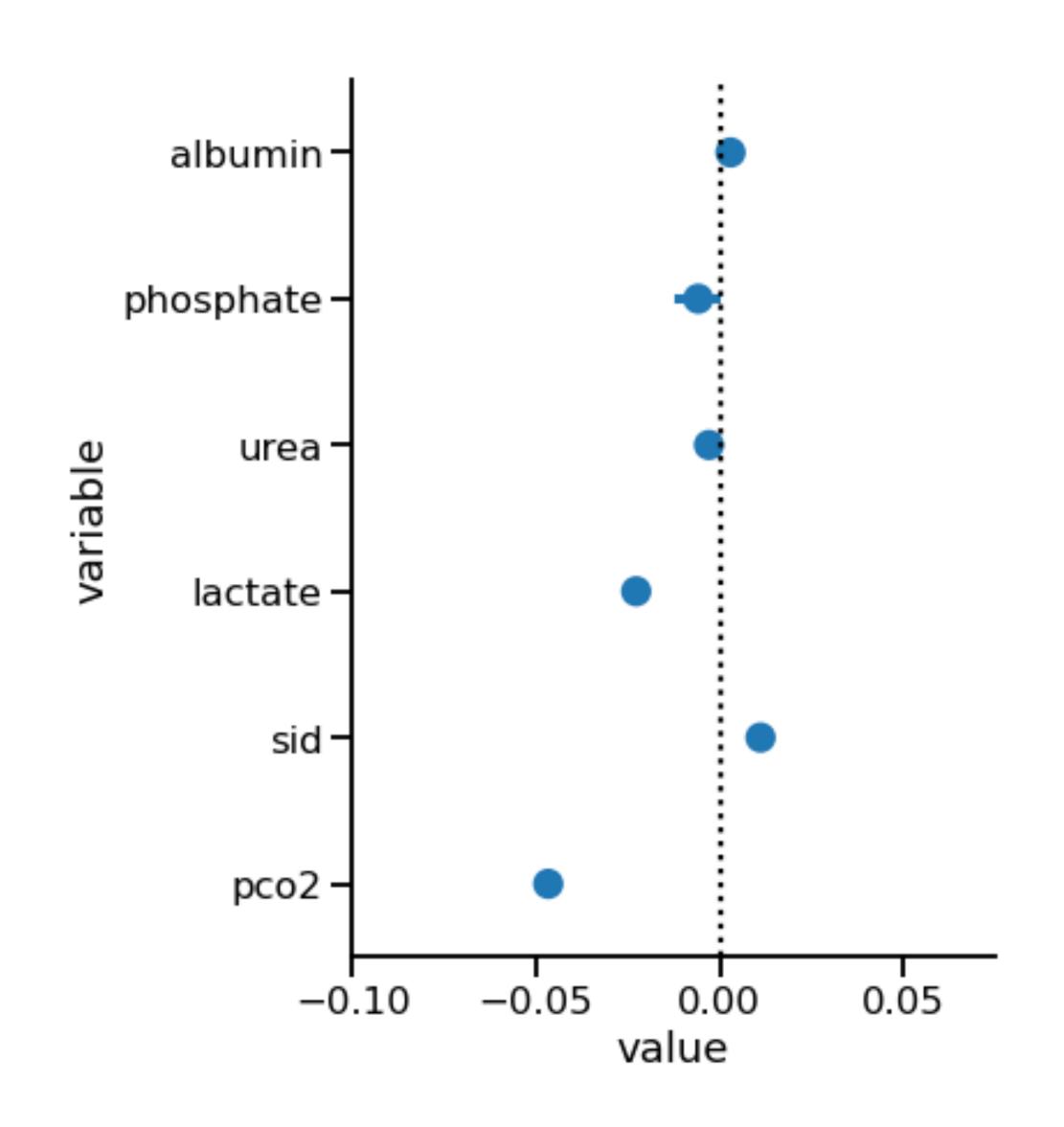
-

d pH bH 05

Systematic Issue We might still be missing something



Systematic Issue Albumin should not have a positive slope



CL

Future Work

Future Work

- AR(1)
- Apply the analysis to a larger dataset

• Find a way to incorporate uncertainties in the covariates into the final model Explore other methods: Sparse Gaussian Process, Hierarchical model with

MIMIC-III

- ICU dataset
- Has downstream tasks
- De facto standard for studies in data imputation

What if we don't have to impute at all?

- Discussed by Lipton et al. (2016), Yoon et al. (2017), Che et al. (2018)
- Using an indicator of missingness that will be used as an input to the model for downstream tasks, e.g. mortality prediction, probability of getting discharged within N-days
- Have been compared with forward-filling and zero imputation

CL

Masking and Time Interval

- Motivation: Informative sampling \rightarrow missingness
- We also need the time interval since the last data acquisition

X: Input time series (2 variables); *s*: Timestamps for *X*;

X =	[47 [<i>NA</i>]	49 15	<i>NA</i> 14	40 NA	NA NA	43 NA	
<i>s</i> =	[0]	0.1	0.6	1.6	2.2	2.5	

M: Masking for *X*; Δ : Time interval for *X*. $\begin{bmatrix} 55\\15 \end{bmatrix} \qquad \mathbf{M} = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 1 & 1\\ 0 & 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$ 3.1] $\Delta = \begin{bmatrix} 0.0 & 0.1 & 0.5 & 1.5 & 0.6 & 0.9 & 0.6 \\ 0.0 & 0.1 & 0.5 & 1.0 & 1.6 & 1.9 & 2.5 \end{bmatrix}$

Figure 2. An example of measurement vectors x_t , time stamps s_t , masking m_t , and time interval δ_t .

Challenges

- Most of the recent work is using deep learning
- Deep learning only provides point estimates
- Still need to account for uncertainty
- Can we combine deep learning and classical (Bayesian) statistical approach?

Thank you